E- CONTENT FORMAT

PART A SECTION

CONTENT CREATOR NAME: Dr. Bandana Singh

Name of College: Career Convent Girls Degree College, Lucknow (015)

Designation: Assistant Professor

Faculty: Science

Department: Chemistry

Gender: Female

Mobile No.: 9793857019

Email: bandanasingh33@gmail.com

S	STREAM	SUBJECT	PAPER	TOPIC	YEAR	NO. OF	CONTENT	CONTENT	CONTENT	VIDEO
Ν	NAME	NAME	NAME	NAME	/	SLIDE\	LANGUAG	TYPE:(PDF/	KEYWORDS	/
					SEME	PAGES	Е	Word /JPG		AUDI
					STER			/PPT)		0
										LINK
1	Science	Chemistry	Physical	Colloids	B.Sc.	7	English	MS Word	Colloids,	No
			Chemistry		\mathbf{H}^{nd}				Dispersed	
					Sem.				Phase,	
									Dispersion	
									Medium, Sols,	
									Gels,	
									Emulsions	

PART B SECTION: Attached Matter in M.S. Word only.

Note:

1- In Part A section filled by Teachers in MS Word Format.

2- In Part B section all Teachers send E –content matter in only M.S. Word Format which are not more than 1.5 MB.

3- All Matters send by HOD's of respective subject at mail:principal.ccgdc@gmail.com

4- Per day One E-Content sends by Science, Commerce & Art Faculty.

Colloidal State of Matters

- Thomas Graham (1861) studied the rates of diffusion of solutions of different substances through parchment membrane or animal membrane (semipermeable membrane) and as a result of his experiments, he divided the substances into two classes-
 - 1) Crystalloids
 - 2) Colloids

1) Crystalloids :-

The substances like common salt, sugar, urea etc. which can be obtained in the crystalline form and in the dissolved state diffusion readily through parchment membrane were termed as crystalloids.

2) Colloids:- (Greek : glue – like)

The substances like starch, gum, glue, gelatin, albumin, silicic acid etc. which are non - crystalline in nature and in the dissolved state do not diffuse or diffuse at a very slow rate through the parchment membrane were termed as colloids.

"Colloidal state of matter is, therefore, a state in which the size of the particles is such (1 to 1000 nm) that they can pass through filter paper but not through animal or parchment membrane ".

The size of the colloidal particles is intermediate between that of particles of true solution and suspension. These sizes are such that particles of true solution can pass through parchment membrane as well as filter paper whereas those of colloidal solution cannot pass through parchment membrane but can pass through filter paper and those of suspension can pass neither through parchment membrane nor through filter paper.

True solution

Colloidal solution

Suspensions

Table-1:DifferencebetweenTruesolutions,ColloidalsolutionsandSuspensions

S .	Property	True solutions	Colloidal solutions	Suspensions
No.				
1.	Nature	Homogeneous	Heterogeneous	Heterogeneous
2.	Particle size	Less than 10 ⁻⁹ m or	Between 10 ⁻⁹ to 10 ⁻⁶ m	More than 10 ⁻⁶ m or
	(diameters)	1nm (i.e. < 10 Å)	or 1nm to 1000nm (i.e. 10 Å to 10000 Å)	1000nm (i.e. >10000 Å)
3.	Filterability	Pass through	Pass through ordinary	Do not pass-through
		ordinary filter paper	filter paper but not	filter paper and
		as well as animal	through animal	animal membrane.
		membrane.	membrane.	
4.	Settling	Do not settle.	Do not settle.	Settle on standing.
5.	Visibility	Particles are invisible.	Scattering of light by	Particles are visible
			the particles is	to naked eye or
			observed under	under a microscope.
			ultramicroscope.	
6.	Diffusion	Diffuse quickly.	Diffuse slowly	Do not diffuse.
7.	Appearance	Clear and transparent	Translucent	Opaque

Dispersed Phase and Dispersion Medium:-

- In true solution, the substance dissolve is called the solute and the medium in which it is dissolved is called the solvent, similarly in a colloidal system, the term solute and solvent are replaced by the term dispersed phase and dispersion medium respectively. Thus, dispersed phase means the substance distributed in the dispersion medium in the form of colloidal particles and the dispersion medium means the medium in which the substance is dispersed in the form of colloidal particles.
- A colloidal system is heterogeneous consisting of two phases the dispersed phase and the dispersion medium.

Classification of colloids:-

Colloids are classified in three different ways as follows:

- (A) Based on physical state of dispersed phase and dispersion medium
- (B) Based on nature of interaction between dispersed phase and dispersion medium
- (C) Based on the type of particles of the dispersed phase

(A) Based on physical state of dispersed phase and dispersion medium:-

Depending upon whether the dispersed phase and dispersion medium are solids, liquids, or gases, eight types of colloidal systems are possible. A gas mixed with another gas forms a homogenous mixture and not a colloidal system. The examples of the various types of colloidal systems are listed in table.

S.No.	Dispersed Phase	Dispersion Medium	Name	Examples	
1.	Solid	Solid	Solid sol	Some coloured glasses, gemstones	
2.	Solid	Liquid	Sol	Some paints, cell fluids, muddy water	
3.	Solid	Gas	Aerosol	Smoke, dust	
4.	Liquid	Solid	Gel	Cheese, butter, jellies	
5.	Liquid	Liquid	Emulsion	Milk, hair cream	
6.	Liquid	Gas	Aerosol	Fog, mist, cloud, insecticides sprays	
7.	Gas	Solid	Solid foam	Pumice stone, foam rubber	
8.	Gas	Liquid	Foam	Froth, whipped cream, soap lather	

Table. 2. Types of colloidal systems (colloidal dispersions)

Out of the various types of colloidal systems, the most common are sols (solids in liquids), gels (liquids in solids) and emulsions (liquids in liquids). Further, it may be mentioned that depending upon the dispersion medium, the sols are given special names as follows:-

Dispersed Phase	Dispersion Medium	Name of the Sol
Solid	Water	Aquasol or Hydrosol
Solid	Alcohol	Alcosol
Solid	Benzene	Benzosol
Solid	Gas	Aerosol

(B) Based on nature of interaction between dispersed phase and dispersion medium :-

On this basis, colloidal sols are divided into two categories, namely, **lyophilic** and **lyophobic**. If water is the dispersion medium, the terms used are **hydrophilic** and **hydrophobic**

1. Lyophilic colloids :- (lyophilic means liquid-loving)

"Substances like gum, gelatin, starch, rubber etc which when mixed with a suitable liquid as the dispersion medium directly form the colloidal sol are called lyophilic and the sols thus obtained are called lyophilic sol'.

- ✤ As they form the colloidal sol directly, they are also called intrinsic colloids.
- 2. Lyophobic colloids:- (lyophobic means liquid hating)

"Substances like metals, their sulphides etc. when simply mixed with the dispersion medium do not form the colloidal sol. Their colloidal sols can be prepared only by special methods. Such substances are called lyophobic and the sols formed by them are called lyophobic sols".

- As their colloidal sols have to be prepared by indirect methods, they are also called extrinsic colloids.
- The greater stability of the lyophilic colloidal sols then the lyophobic colloidal sols is due to the fact that the former are highly hydrated in the solution.
- The essential points of difference between the lyophilic sols and lyophobic sols are given in table.

	Dreventu	Lucentille cole	Lucebabie acto
S.N	Property	Lyophilic sols	Lyophobic sols
0.			
1.	Ease of preparation	Prepared easily by	Cannot be prepared
		directly mixing with the	directly, prepared by
		liquid dispersion	special methods only.
		medium.	
2.	Stability	They are quite stable	They are easily
		and are not easily	precipitated by addition of
		precipitated or	a small amount of a
		coagulated.	suitable electrolyte.
3.	Hydration	They are highly	They are not much
		hydrated.	hydrated.
4.	Reversible and	They are reversible in	They are irreversible in
	irreversible nature	nature i.e., once	nature i.e., once
		precipitated can reform	precipitated cannot form
		the colloidal sol by	the colloidal sol by simple
		simply remixing with the	addition of the dispersion
		dispersion medium.	medium.
5.	Nature of substances	These sols are usually	These sols are usually
		formed by the organic	formed by the inorganic
		substances like starch,	substances like metals,
		gum, proteins etc.	their sulphides etc.
6.	Viscosity	Their viscosity is much	Their viscosity is almost
		higher than that of the	the same as that of the
		medium.	medium.
7.	Surface tension	Their surface tension is	Their surface tension is
		usually lower than that of	nearly same as that of the
		the dispersion medium.	dispersion medium.
	1	l	

Table-3: Points of difference between lyophilic sols and lyophobic sols

(C) Based on the type of particles of the dispersed phase:-

Depending upon how the different substances may have size in the range of the colloids, the various types of colloids or colloidal dispersions may be divided into the following three categories:

- (1). Multimolecular colloids
- (2). Macromolecular colloids
- (3). Associated colloids

(1). Multimolecular colloids:-

"When on Dispersion of a substance in the dispersion medium, a large number of atoms or smaller molecules of the substances (with diameters less than 1 nm) aggregate together to form species having size in the colloidal range, the species thus formed are called multimolecular colloids".

For Example, a gold sol may contain particles of various sizes having several atoms. Sulphur sol consists of particles containing a thousand or so of S₈ sulphur molecules. These are held together by Van der Waals forces.

(2). Macromolecular colloids:-

"When certain substances having big size molecules, called macromolecules, having large molecular masses are dissolved in a suitable liquid, they form a solution in which the molecule of the substances, i.e., the dispersed particles have size in the colloidal range, such substances are called macromolecular colloids".

These macromolecular substances are usually Polymers with very high molecular masses.

- Examples of naturally occurring macromolecules are starch, cellulose, protein, enzymes and gelatin.
- Examples of man-made macromolecules are polyethylene, nylon, polystyrene, synthetic rubber etc.

(3). Associated colloids:-

"The substances which when dissolved in a medium at low concentration behave as normal, strong electrolytes but at higher concentration exhibit colloidal state properties due to the formation of aggregated particles are called associated colloids".

The aggregate particles thus formed are called micelles. The formation of micelles take place only above of particular temperature called kraft temperature (T_k) and above a particular concentration called critical micelle concentration (CMC). Examples: soaps and synthetic detergent.

Table-4: Comparison of some important characteristic of multimolecular, macromolecular and associated colloids.

S.No.	Multimolecular colloids	Macromolecular	Associated colloids
		colloids	
1.	They are formed by the	They are molecules of	They are found by the
	aggregation of a large	large size, e.g., Polymers,	aggregation of a large
	number of atoms or	like rubber, nylon, starch,	number of ions in
	molecules which generally	protein etc.	concentrated solution,
	have diameters less than		e.g., soap sol, detergent
	1 nm e.g., sols of gold,		
	sulphur etc.		
2.	Their molecular masses	They have high molecular	Their molecular masses
	are not very high.	masses.	are generally high.
3.	Their atoms or molecules	Due to long chain, the Van	Higher is the
	are held Together by weak	der Walls forces holding	concentration, greater
	Van der Walls forces.	them are comparatively	are the Van der Walls
		stronger.	forces.