Matrices:

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object.
For example, $\left[\begin{array}{lll}1 & 3 & 6 \\ 6 & 7 & 3\end{array}\right]$
is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " 2×3-matrix", or a matrix of dimension 2×3.

Types of Matrices

- Row Matrix
- Column Matrix
- Singleton Matrix
- Rectangular Matrix
- Square Matrix
- Identity Matrices
- Null Matrix
- Diagonal Matrix

Row Matrix:

A matrix is said to be row matrix if $A=\left[a_{i j}\right]_{m \times n} ; \quad m=1, \quad n \in N$.
Eg- $\left.\begin{array}{lll}1 & 2 & 5\end{array}\right]_{1 \times 3}$

Column Matrix:

A matrix is said to be column matrix if $A=\left[a_{i j}\right]_{m \times n} ; \quad n=1, \quad m \in N$.
Eg- $\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]_{3 \times 1}$

Singleton Matrix:

A matrix is said to be singleton matrix if $A=\left[a_{11}\right]_{m \times n} ; \quad \forall m, n$.
Eg- $\quad[1]_{1 \times 1}$

Rectangular Matrix:

A matrix is said to be Rectangular matrix iff_ $A=\left[a_{i j}\right]_{m \times n} ; m \neq n$.
Eg- $\left[\begin{array}{ll}1 & 2 \\ 4 & 6 \\ 6 & 5\end{array}\right]_{3 \times 2}$ and $\left[\begin{array}{lll}1 & 3 & 8 \\ 3 & 9 & 0\end{array}\right]_{2 \times 3}$

Square Matrix:

A matrix is said to be Square matrix iff_ $A=\left[a_{i j}\right]_{m \times n} ; m=n$.

Eg- $\left[\begin{array}{lll}1 & 2 & 5 \\ 9 & 0 & 8 \\ 4 & 8 & 6\end{array}\right]_{3 \times 3}$.

Identity Matrix:

A Square matrix is said to be identity matrix if $_=\left[a_{i j}\right]_{m \times n} ; a_{i j}=1$ whenever $i=j$ and $a_{i j}=0$ whenever $i \neq$ j.

Eg- $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]_{3 \times 3}$

Null Matrix:

A square matrix is said to be Null matrix $_A=\left[a_{i j}\right]_{m \times n} ; a_{i j}=0 \forall i, j$.
Eg- $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]_{3 \times 3}$.

Diagonal Matrix:

A square matrix is said to be Diagonall matrix $__{-}=\left[a_{i j}\right]_{m \times n} ; a_{i j}=0$ whenever $i \neq j$.
Eg- $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 6\end{array}\right]_{3 \times 3}$.

