Matrices:

In mathematics, a **matrix** is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object.

For example, $\begin{bmatrix} 1 & 3 & 6 \\ 6 & 7 & 3 \end{bmatrix}$

is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " 2×3 -matrix", or a matrix of dimension 2×3 .

Types of Matrices

- Row Matrix
- Column Matrix
- Singleton Matrix
- Rectangular Matrix
- Square Matrix
- Identity Matrices
- Null Matrix
- Diagonal Matrix

Row Matrix:

A matrix is said to be row matrix if $A = [a_{ij}]_{m \times n}$; m = 1, $n \in N$. Eg- $\begin{bmatrix} 1 & 2 & 5 \end{bmatrix}_{1 \times 3}$

Column Matrix:

A matrix is said to be column matrix if $A = [a_{ij}]_{m \times n}$; n = 1, $m \in N$.

Eg-
$$\begin{bmatrix} 1\\2\\4 \end{bmatrix}_{3\times 1}$$

Singleton Matrix:

A matrix is said to be singleton matrix if $A = [a_{11}]_{m \times n}$; $\forall m, n$.

Eg- $[1]_{1 \times 1}$

Rectangular Matrix:

A matrix is said to be Rectangular matrix iff $A = [a_{ij}]_{m \times n}$; $m \neq n$.

Eg-
$$\begin{bmatrix} 1 & 2 \\ 4 & 6 \\ 6 & 5 \end{bmatrix}_{3 \times 2}$$
 and $\begin{bmatrix} 1 & 3 & 8 \\ 3 & 9 & 0 \end{bmatrix}_{2 \times 3}$

Square Matrix:

A matrix is said to be Square matrix iff $A = [a_{ij}]_{m \times n}$; m = n.

	<u>[</u> 1	2	5]	
Eg-	9	0	8	
	4	8	$6 J_{3 \times 3}$	

Identity Matrix:

A Square matrix is said to be identity matrix if $A = [a_{ij}]_{m \times n}$; $a_{ij} = 1$ whenever i = j and $a_{ij} = 0$ whenever $i \neq j$ *j* .

 $\mathsf{Eg-} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{_{3\times 3}} \ .$

Null Matrix:

A square matrix is said to be Null matrix $A = [a_{ij}]_{m \times n}$; $a_{ij} = 0 \forall i, j$.

```
\mathsf{Eg-} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{3\times 3}.
Diagonal Matrix:
```

A square matrix is said to be Diagonall matrix $A = [a_{ij}]_{m \times n}$; $a_{ij} = 0$ whenever $i \neq j$. Eg- $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 6 \end{bmatrix}_{3 \times 3}$.