Continuous Function:

A continuous function is a function whose graph is continuous without any breaks or jumps. i.e., if we are able to draw the graph of a function without even lifting the pencil, then we say that the function is continuous.

Let us study more about the continuity of a function .

What is Continuous Function?

The mathematical definition of the continuity of a function is as follows.
A function $f(x)$ is continuous at a point $x=a$ if

- $f(a)$ exists;
- $\lim _{\mathrm{x}} \rightarrow_{\mathrm{a}} \mathrm{f}(\mathrm{x})$ exists;
[i.e., $\left.\lim _{x} \rightarrow{ }_{a-} f(x)=\lim _{x} \rightarrow_{a+} f(x)\right]$ and
- Both of the above values are equal. i.e., $\lim _{x} \rightarrow{ }_{a} f(x)=f(a)$.

Properties of Continuity:

If two functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are continuous at $\mathrm{x}=\mathrm{a}$ then

- $\mathrm{f}+\mathrm{g}, \mathrm{f}-\mathrm{g}$, and fg are continuous at $\mathrm{x}=\mathrm{a}$.
- f / g is also continuous at $x=$ a provided $g(a) \neq 0$.
- If f is continuous at $g(a)$, then the composition function ($f o g$) is also continuous at $\mathrm{x}=\mathrm{a}$.
- All polynomial functions are continuous over the set of all real numbers.
- The absolute value function $|\mathrm{x}|$ is continuous over the set of all real numbers.
- Exponential functions are continuous at all real numbers.
- The functions $\sin x$ and $\cos x$ are continuous at all real numbers.
- The functions $\underline{\tan } x, \underline{\operatorname{cosec}} x, \underline{\sec } x$, and $\underline{\cot x}$ are continuous on their respective domains.
 domains.

Theorems on Continuous Function:

- Theorem 1: All polynomial functions are continuous on $(-\infty, \infty)$.
- Theorem 2: The functions $\mathrm{e}^{\mathrm{x}}, \sin \mathrm{x}, \cos \mathrm{x}$, and $\underline{\arctan } \mathrm{x}$ are continuous on ($\infty, \infty)$.
- Theorem 3: If two functions f and g are continuous on an interval $[a, b]$, then the algebra of functions: $\mathrm{f}+\mathrm{g}, \mathrm{f}-\mathrm{g}$, and fg are continuous on $[\mathrm{a}, \mathrm{b}]$. But f / g is continuous on $[\mathrm{a}, \mathrm{b}]$ given that f / g is NOT zero anywhere in the interval.
- Theorem 4: A rational function is continuous except at the vertical asymptotes.

NOT Continuous Function:

A function that is NOT continuous is said to be a discontinuous function. i.e., the graph of a discontinuous function breaks or jumps somewhere. There are different types of discontinuities as explained below. By the definition of the continuity of a function, a function is NOT continuous in one of the following cases. We can see all the types of discontinuities in the figure below

Jump Discontinuity:

$\lim _{x} \rightarrow{ }_{a-} f(x)$ and $\lim _{x} \rightarrow a_{+} f(x)$ exist but they are NOT equal. It is called "jump discontinuity" (or) "non-removable discontinuity".

Removable Discontinuity:

$\lim _{x} \rightarrow{ }_{a} f(x)$ exists (i.e., $\lim _{x} \rightarrow{ }_{a-} f(x)=\lim _{x} \rightarrow a_{+} f(x)$) but it is NOT equal to $f(a)$. It is called "removable discontinuity".

Infinite Discontinuity:

The values of one or both of the limits $\lim _{x} \rightarrow a_{-} f(x)$ and $\lim _{x} \rightarrow a_{+} f(x)$ is $\pm \infty$. It is called "infinite discontinuity".

Notes:

- A function is continuous at $x=a$ if and only if $\lim _{x} \rightarrow{ }_{a} f(x)=f(a)$.
- It means, for a function to have continuity at a point, it shouldn't be broken at that point.
- For a function to be differentiable, it has to be continuous.
- All polynomials are continuous.
- The functions are NOT continuous at vertical asymptotes.
- The functions are NOT continuous at holes.

